Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Immune Netw ; 23(2): e19, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2315720

ABSTRACT

Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

2.
J Med Virol ; 95(3): e28642, 2023 03.
Article in English | MEDLINE | ID: covidwho-2287827

ABSTRACT

Individuals with a recent common cold coronavirus infection, which leads to pre-existing immunity against SARS-CoV-2, displayed a less severe course of COVID-19. However, the relationship between pre-existing immunity against SARS-CoV-2 and the inactivated-vaccine-induced immune response is still unknown. Here, 31 healthcare workers who received standard two doses of inactivated COVID-19 vaccines (Weeks 0 and 4, respectively) were enrolled, vaccine-induced neutralization and T cell responses were detected, and the correlation between the pre-existing SARS-CoV-2-specific immunity was analyzed. We found the SARS-CoV-2-specific antibodies, pseudovirus neutralization test (pVNT) titers, and spike-specific interferon gamma (IFN-γ) production in CD4+ and CD8+ T cells were significantly elevated after two doses of inactivated vaccines. Interestingly, the pVNT titers after the second dose of vaccination displayed no significant correlation with the pre-existing SARS-CoV-2-specific antibodies or B cells, nor the pre-existing spike-specific CD4+ T cells. Notably, the spike-specific T cell response after the second dose of vaccination was positively correlated with the pre-existing receptor binding domain (RBD)-specific B cells and CD4+ T cells, which were documented by the frequencies of RBD-binding B cells, the breadth of RBD-specific B cell epitopes, and the frequency of IFN-γ-expressing RBD-specific CD4+ T cells. Overall, the inactivated-vaccine-induced T cell responses, not the inactivated-vaccine-induced neutralization, closely correlated with pre-existing immunity to SARS-CoV-2. Our results provide a better understanding of inactivated-vaccine-induced immunity and help predict the immunogenicity induced by inactivated vaccines in individuals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Antibodies, Viral , Vaccination , Antibodies, Neutralizing , Vaccines, Inactivated
3.
Infection ; 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-2268044

ABSTRACT

OBJECTIVES: To assess the severity of symptoms, duration of infection and viral loads of health-care workers (HCWs) who tested positive for Coronavirus disease 2019 (COVID-19) during Omicron's prevalence, in regard to vaccination and previous infection. METHODS: During 2 weeks of highest rate of COVID-19 cases in Bosnia and Herzegovina, the positive nasopharyngeal swabs were analysed in 141 HCWs by reverse transcription quantitative PCR, targeting four different genes: RdRp, E, N and nsp14. Uniformed questionnaire was used to collect relevant sociodemographic and epidemiological data from HCWs divided into four groups: unvaccinated/not previously infected (group 1); unvaccinated/previously infected (group 2); vaccinated/not previously infected (group 3); and vaccinated/previously infected (group 4). RESULTS: We observed that occurrence of fever and smell or taste loss were more frequent in group 1 (86.4% and 25%) and group 3 (76.9% and 19.2%), in comparison to group 2 (64.4% and 6.7%) and group 4 (69.2% and 3.8%), (p = 0.023 and p = 0.003). Although statistically not significant, group 2 (61.9%), group 3 (65.4%), and group 4 (70.8%) experienced negativization within 7 days of positive RT-qPCR test, whereas 51.2% of HCWs from group 1 tested negative later on. There is no significant difference between all four groups regarding Ct values of analysed genes. CONCLUSION: During Omicron's prevalence, the vaccination had less substantial effect on symptomatic disease among HCWs, while fever and loss of smell or taste were considerably less likely to occur upon reinfection. Since viral loads and negativization periods do not seem to significantly vary, irrespective of pre-existing immunity, systemic vaccination and mask-wearing should still be considered among HCWs.

4.
Cell Rep ; 42(3): 112167, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2240078

ABSTRACT

mRNA vaccines are effective in preventing severe COVID-19, but breakthrough infections, emerging variants, and waning immunity warrant the use of boosters. Although mRNA boosters are being implemented, the extent to which pre-existing immunity influences the efficacy of boosters remains unclear. In a cohort of individuals primed with the mRNA-1273 or BNT162b2 vaccines, we report that lower antibody levels before boost are associated with higher fold-increase in antibody levels after boost, suggesting that pre-existing antibody modulates the immunogenicity of mRNA vaccines. Our studies in mice show that pre-existing antibodies accelerate the clearance of vaccine antigen via Fc-dependent mechanisms, limiting the amount of antigen available to prime B cell responses after mRNA boosters. These data demonstrate a "tug of war" between pre-existing antibody responses and de novo B cell responses following mRNA vaccination, and they suggest that transient downmodulation of antibody effector function may improve the efficacy of mRNA boosters.


Subject(s)
BNT162 Vaccine , COVID-19 , Animals , Humans , Mice , COVID-19/prevention & control , Immunization, Secondary , Antibodies , RNA, Messenger/genetics , mRNA Vaccines , Antibodies, Viral , Antibodies, Neutralizing
5.
Applied Mathematics and Computation ; : 126388, 2021.
Article in English | ScienceDirect | ID: covidwho-1271554

ABSTRACT

Combining a deterministic SEQIHRS model proposed by Sahu et al. (2015) and the present mathematical modelling of media coverage effect (2020), a hybrid stochastic SEQIHR model, perturbed by both nonlinear white noise and colored noise, is formulated and studied for the transmission dynamics of an infectious disease with media coverage, quarantine strategies and pre-existing immunity in a community. First, we prove that the stochastic model possesses a unique global positive solution. Second, by means of the basic reproduction number R0 of the corresponding deterministic model, two relevant critical values which include R¯0 and R0C are derived. Next, we obtain the disease extinction under R0<1 and R¯0<1. Moreover, we further establish the sufficient condition R0C>1 for the existence and uniqueness of an ergodic stationary distribution of the stochastic model, which means the infectious disease will be prevailing and persistent in a community. Finally, several numerical simulations are performed to validate the above theoretical results. Besides, the impact of media coverage and nonlinear hybrid noises on the dynamical behavior of the stochastic model are studied at the end of this paper.

6.
Emerg Microbes Infect ; 11(1): 1778-1786, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915483

ABSTRACT

The Omicron BA.1 (B.1.1.529) SARS-CoV-2 variant is characterized by a high number of mutations in the viral genome, associated with immune escape and increased viral spread. It remains unclear whether milder COVID-19 disease progression observed after infection with Omicron BA.1 in humans is due to reduced pathogenicity of the virus or due to pre-existing immunity from vaccination or previous infection. Here, we inoculated hamsters with Omicron BA.1 to evaluate pathogenicity and kinetics of viral shedding, compared to Delta (B.1.617.2) and to animals re-challenged with Omicron BA.1 after previous SARS-CoV-2 614G infection. Omicron BA.1 infected animals showed reduced clinical signs, pathological changes, and viral shedding, compared to Delta-infected animals, but still showed gross- and histopathological evidence of pneumonia. Pre-existing immunity reduced viral shedding and protected against pneumonia. Our data indicate that the observed decrease of disease severity is in part due to intrinsic properties of the Omicron BA.1 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mesocricetus , SARS-CoV-2/genetics , Vaccination
7.
Vaccine X ; 11: 100165, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1814868

ABSTRACT

Little is known about the factors associated with lack of T-cell response to mRNA vaccines against SARS-CoV-2. In a prospective cohort of 61 health care workers (HCWs), 21% and 16% after the first dose of mRNA BNT162b vaccine, and 12% and 7% after the second dose, showed lack of CD4+ and CD8+ T-cell response, respectively. Pre-existing T-cell immunity, due to past infection (46%) or cross-reactive cellular response (26%), was significantly associated with T-cell response in frequency (CD4+ T-cell, 100% vs 82% after two doses; p = 0.049) and in the magnitude of T-cell response during follow up. Furthermore, baseline CD4+ T-cell correlated positively with the titer of specific IgG-antibodies after first and second vaccine dose. Our data demonstrate that cross-reactive T-cells correlate with a better cellular response as well as an enhanced humoral response, and we confirm the close correlation of humoral and cellular response after mRNA vaccination.

8.
Cell Host Microbe ; 30(1): 83-96.e4, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1634725

ABSTRACT

SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Common Cold/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Animals , Asymptomatic Infections , COVID-19/virology , Case-Control Studies , Cell Line , Common Cold/virology , Cross Reactions/immunology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Spike Glycoprotein, Coronavirus/immunology
9.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: covidwho-1551629

ABSTRACT

Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Age Distribution , Alphacoronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/immunology , Blood Donors , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Cross Reactions , Epitopes , Female , Humans , Male , Phosphoproteins/immunology , Sierra Leone , United States , Viral Pseudotyping
10.
EBioMedicine ; 74: 103700, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1540595

ABSTRACT

BACKGROUND: Antibodies raised against human seasonal coronaviruses (sCoVs), which are responsible for the common cold, are known to cross-react with SARS-CoV-2 antigens. This prompts questions about their protective role against SARS-CoV-2 infections and COVID-19 severity. However, the relationship between sCoVs exposure and SARS-CoV-2 correlates of protection are not clearly identified. METHODS: We performed a cross-sectional analysis of cross-reactivity and cross-neutralization to SARS-CoV-2 antigens (S-RBD, S-trimer, N) using pre-pandemic sera from four different groups: pediatrics and adolescents, individuals 21 to 70 years of age, older than 70 years of age, and individuals living with HCV or HIV. Data was then further analysed using machine learning to identify predictive patterns of neutralization based on sCoVs serology. FINDINGS: Antibody cross-reactivity to SARS-CoV-2 antigens varied between 1.6% and 15.3% depending on the cohort and the isotype-antigen pair analyzed. We also show a range of neutralizing activity (0-45%) with median inhibition ranging from 17.6 % to 23.3 % in serum that interferes with SARS-CoV-2 spike attachment to ACE2 independently of age group. While the abundance of sCoV antibodies did not directly correlate with neutralization, we show that neutralizing activity is rather dependent on relative ratios of IgGs in sera directed to all four sCoV spike proteins. More specifically, we identified antibodies to NL63 and OC43 as being the most important predictors of neutralization. INTERPRETATION: Our data support the concept that exposure to sCoVs triggers antibody responses that influence the efficiency of SARS-CoV-2 spike binding to ACE2, which may potentially impact COVID-19 disease severity through other latent variables. FUNDING: This study was supported by a grant by the CIHR (VR2 -172722) and by a grant supplement by the CITF, and by a NRC Collaborative R&D Initiative Grant (PR031-1).


Subject(s)
Antibodies, Viral/blood , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/pathology , Common Cold/virology , Cross Reactions/immunology , Cross-Sectional Studies , Humans , Middle Aged , Seroepidemiologic Studies , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
11.
Viruses ; 13(9)2021 09 07.
Article in English | MEDLINE | ID: covidwho-1427002

ABSTRACT

If viral strains are sufficiently similar in their immunodominant epitopes, then populations of cross-reactive T cells may be boosted by exposure to one strain and provide protection against infection by another at a later date. This type of pre-existing immunity may be important in the adaptive immune response to influenza and to coronaviruses. Patterns of recognition of epitopes by T cell clonotypes (a set of cells sharing the same T cell receptor) are represented as edges on a bipartite network. We describe different methods of constructing bipartite networks that exhibit cross-reactivity, and the dynamics of the T cell repertoire in conditions of homeostasis, infection and re-infection. Cross-reactivity may arise simply by chance, or because immunodominant epitopes of different strains are structurally similar. We introduce a circular space of epitopes, so that T cell cross-reactivity is a quantitative measure of the overlap between clonotypes that recognize similar (that is, close in epitope space) epitopes.


Subject(s)
Coronavirus Infections/immunology , Coronavirus/immunology , Cross Reactions/immunology , Immunodominant Epitopes/immunology , Influenza A virus/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Coronavirus/classification , Coronavirus/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Immunologic Memory , Influenza A virus/genetics , Influenza, Human/immunology , Mice , Models, Theoretical , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell
12.
EBioMedicine ; 70: 103539, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356205

ABSTRACT

BACKGROUND: In recent months numerous health care professional acquired COVID-19 at the workplace resulting in significant shortages in medical and nursing staff. We investigated how prior COVID-19 affects SARS-CoV-2 vaccination and how such knowledge could facilitate frugal vaccination strategies. METHODS: In a cohort of 41 healthcare professionals with (n=14) and without (n=27) previous SARS-CoV-2 infection, we assessed the immune status before, during and after vaccination with BNT162b2. The humoral immune response was assessed by receptor binding domain ELISA and different SARS-CoV-2 neutralisation assays using wildtype and pseudo-typed viruses. T cell immunity against SARS-CoV-2 surface and nucleocapsid peptides were studied using interferon-γ release assays and intracellular flow cytometry. Vaccine-related side effects were captured. FINDINGS: Prior COVID-19 resulted in improved vaccine responses both in the B and T cell compartment. In vaccine recipients with prior COVID-19, the first vaccine dose induced high antibody concentrations comparable to seronegative vaccine recipients after two injections. This translated into more efficient neutralisation of virus particles, even more pronounced than expected from the RBD ELISA results. Furthermore, T cell responses were stronger in convalescents and particularly strong against the SARS-CoV-2 nucleocapsid protein. INTERPRETATION: Herein, we corroborate recent findings suggesting that in convalescents a single vaccine dose is sufficient to boost adequate in vitro neutralisation of SARS-CoV-2 and therefore may be sufficient to induce adequate protection against severe COVID-19. New spike mutated virus variants render the highly conserved nucleocapsid protein - eliciting strong SARS-CoV-2 specific T cell immunity - an interesting additional vaccine target. FUNDING: Christian Doppler Research Association, Johannes Kepler University Linz.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Health Personnel , Humans , Immunity, Humoral/immunology , Male , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
13.
Front Immunol ; 12: 636768, 2021.
Article in English | MEDLINE | ID: covidwho-1156122

ABSTRACT

Understanding the causes of the diverse outcome of COVID-19 pandemic in different geographical locations is important for the worldwide vaccine implementation and pandemic control responses. We analyzed 42 unexposed healthy donors and 28 mild COVID-19 subjects up to 5 months from the recovery for SARS-CoV-2 specific immunological memory. Using HLA class II predicted peptide megapools, we identified SARS-CoV-2 cross-reactive CD4+ T cells in around 66% of the unexposed individuals. Moreover, we found detectable immune memory in mild COVID-19 patients several months after recovery in the crucial arms of protective adaptive immunity; CD4+ T cells and B cells, with a minimal contribution from CD8+ T cells. Interestingly, the persistent immune memory in COVID-19 patients is predominantly targeted towards the Spike glycoprotein of the SARS-CoV-2. This study provides the evidence of both high magnitude pre-existing and persistent immune memory in Indian population. By providing the knowledge on cellular immune responses to SARS-CoV-2, our work has implication for the development and implementation of vaccines against COVID-19.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , B-Lymphocytes/virology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Female , Humans , Immunity, Cellular , Male , Middle Aged , Time Factors , Young Adult
14.
Int J Infect Dis ; 105: 21-25, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1081433

ABSTRACT

BACKGROUND: Studies of T-cell immune responses against SARS-CoV-2 are important in understanding the immune status of individuals or populations. Here, we use a simple, cheap, and rapid whole blood stimulation assay - an Interferon-Gamma Release Assay (IGRA) - to study T-cell immunity to SARS-CoV-2 in convalescent COVID-19 patients and in unexposed healthy contacts from Quito, Ecuador. METHODS: Interferon-gamma (INF-γ) production was measured in the heparinized blood of convalescent and unexposed subjects after stimulation for 24 h with the SARS-CoV-2 Spike S1 protein, the Receptor Binding Domain (RBD) protein or the Nucleocapsid (NP) protein, respectively. The presence of IgG-RBD protein antibodies in both study groups was determined with an "in-house" ELISA. RESULTS: As measured with INF-γ production, 80% of the convalescent COVID-19 patients, all IgG-RBD seropositive, had a strong T-cell response. However, unexpectedly, 44% of unexposed healthy controls, all IgG-RBD seronegative, had a strong virus-specific T-cell response with the COVID-19 IGRA, probably because of prior exposure to common cold-causing coronaviruses or other viral or microbial antigens. CONCLUSION AND DISCUSSION: The high percentage of unexposed healthy subjects with a pre-existing immunity suggests that a part of the Ecuadorian population is likely to have SARS-CoV-2 reactive T-cells. Given that the IGRA technique is simple and can be easily scaled up for investigations where high numbers of patients are needed, this COVID-19 IGRA may serve to determine if the T-cell only response represents protective immunity to SARS-CoV-2 infection in a population-based study.


Subject(s)
COVID-19/immunology , Interferon-gamma Release Tests , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Female , Humans , Male , Middle Aged
15.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1071140

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Subject(s)
Alphacoronavirus/immunology , Antibodies, Viral , Betacoronavirus/immunology , COVID-19/immunology , Adolescent , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Serological Testing , Child , Child, Preschool , Chlorocebus aethiops , Cross Protection , Cross Reactions , Disease Susceptibility , HEK293 Cells , Humans , Infant , Infant, Newborn , Vero Cells
16.
Crit Rev Microbiol ; 46(2): 182-193, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-47819

ABSTRACT

The last century has witnessed several assaults from RNA viruses, resulting in millions of death throughout the world. The 21st century appears no longer an exception, with the trend continued with escalated fear of SARS coronavirus in 2002 and further concern of influenza H5N1 in 2003. A novel influenza virus created the first pandemic of the 21st century, the pandemic flu in 2009 preceded with the emergence of another deadly virus, MERS-CoV in 2012. A novel coronavirus "SARS-CoV-2" (and the disease COVID-19) emerged suddenly, causing a rapid outbreak with a moderate case fatality rate. This virus is continuing to cause health care providers grave concern due to the lack of any existing immunity in the human population, indicating their novelty and lack of previous exposure. The big question is whether this novel virus will be establishing itself in an endemic form or will it eventually die out? Endemic viruses during circulation may acquire mutations to infect naïve, as well as individual with pre-existing immunity. Continuous monitoring is strongly advisable, not only to the newly infected individuals, but also to those recovered individuals who were infected by SARS-CoV-2 as re-infection may lead to the selection of escape mutants and subsequent dissemination to the population.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Disease Outbreaks , Endemic Diseases , Humans , Mutation , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , SARS-CoV-2 , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL